Medical device security – The transition from patient privacy to patient safety

Scott Erven

Who I am

Scott Erven - Managing Director – Healthcare Industries Advisory – Cybersecurity & Privacy

Medical Device Security Lead For PwC

Over 5 Years Leading Medical Device Security Research

Over 15 Years IT Security Experience

Over 5 Years Managing Security For Healthcare Systems & Providers
What we’ll be covering today

1. Why medical device security matters.
2. Vulnerabilities inside the medical device security landscape.
3. Are attacks a reality?
4. Diagnosis and problem awareness.
5. Treatment plans.

Why medical device security matters
Personal impact

- Many of us rely on these devices daily.
- When we are at our most vulnerable, we will depend on these devices for life.
- Even at times when we aren’t personally affected, people we care about may be.

Malicious intent is not a prerequisite to patient safety issues
Research – Device vulnerabilities

Device vulnerabilities

Weak default/hardcoded administrative credentials
- Treatment modification
- Cannot attribute action to individual

Known software vulnerabilities in existing and new devices
- Reliability and stability issues
- Increased deployment cost to preserve patient safety

Unencrypted data transmission and service authorization flaws
- Healthcare record privacy and integrity
- Treatment modification
Research – Internet exposure

Shodan search initial findings

Doing a search for anesthesia in Shodan and realized it was not an anesthesia workstation.

Located a public facing system with the Server Message Block (SMB) service open, and it was leaking intelligence about the healthcare organization’s entire network including medical devices.
Initial healthcare organization discovery

Very large U.S. based healthcare system consisting of over 12,000 employees and over 3,000 physicians. Including large cardiovascular and neuroscience institutions.

Exposed intelligence on over 68,000 systems and provided direct attack vector to the systems.

Exposed numerous connected third-party organizations and healthcare systems.

Did we only find one?

No. We found hundreds!!

Generic Search Examples:

- shodan port:445 org:health/clinic/hospital
 - health: 148 hits
 - clinic: 18 hits
 - hospital: 119 hits
 - medical: 255 hits

Change the search term and many more come up. Potentially thousands if you include exposed third-party healthcare systems.
Let me paint the picture

System with Lockout Exemption:

<table>
<thead>
<tr>
<th>Impact:</th>
<th>EMR:</th>
</tr>
</thead>
<tbody>
<tr>
<td>System May Not Require Login</td>
<td>EMR:</td>
</tr>
</tbody>
</table>

Getting a little warmer!

Cardiology Systems:

| Impact: | Pediatric Nuclear Medicine
|---------| Anesthesia Systems |
Summary of devices inside organization

- Anesthesia Systems – 21
- Cardiology Systems – 488
- Infusion Systems – 133
- MRI – 97
- PACS Systems – 323
- Nuclear Medicine Systems – 67

Potential attacks – Physical

- We know what type of systems and medical devices are inside the organization.
- We know the healthcare organization and location.
- We know the floor and office number.
- We know if it has a lockout exemption.
Potential attacks – Phishing/Pivot

- We know what type of systems and medical devices are inside the organization.
- We know the healthcare organization and employee names.
- We know the direct public Internet facing system is vulnerable to MS08-067 and is Windows XP. We know the hostname of all these devices.
- We can create a custom payload to only target medical devices and systems with known vulnerabilities.

Are attacks a reality?
Real world attacks – Honeypot research

- Using known default login information for remote access?
- Leveraging existing exploits for remote command execution?
- Custom malware?
- Malicious intent to interfere with the device (or worse, someone using the device)?
- Campaigns against specific vendor devices?

Real world attacks – The data

<table>
<thead>
<tr>
<th>Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Honeypots</td>
<td>10</td>
</tr>
<tr>
<td>Successful logins (SSH/Web)</td>
<td>55,416</td>
</tr>
<tr>
<td>Successful exploits (Majority is MS08-067)</td>
<td>24</td>
</tr>
<tr>
<td>Dropped malware samples</td>
<td>299</td>
</tr>
<tr>
<td>Top 3 Source Countries</td>
<td>Netherlands, China, South Korea</td>
</tr>
<tr>
<td>HoneyCreds login</td>
<td>8</td>
</tr>
</tbody>
</table>

HoneyCred logins are unique to the honeypot ssh/web service, someone did some research.
Real world attacks – Conclusion

- What did the attacker do once he got in? Nothing
- Did they realize they had root on a MRI machine? Probably not
- Are there compromised medical devices calling back to a command and control server? Absolutely
- Did the command and control owners know what the information they are sitting on? Didn’t appear so

Problem awareness
Problem awareness

1. Medical devices are increasingly accessible due to the nature of healthcare.

2. HIPAA focuses on patient privacy, not patient safety.

4. Malicious intent is not a prerequisite for adverse patient outcomes.

Technical properties

Exposed, vulnerable systems

- All software has flaws.
- Connectivity increases potential interactions.
- A software-driven, connected medical device is a vulnerable, exposed one.

Lack of patient safety alignment in medical device cyber security practices
A brief history of United States Food and Drug Administration (U.S. FDA) and medical device cybersecurity

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>February 2013</td>
<td>President Obama issues executive order on improving infrastructure cybersecurity</td>
</tr>
<tr>
<td>June 2013</td>
<td>FDA issues general warning on device cybersecurity based on "known vulnerabilities"</td>
</tr>
<tr>
<td>July 2013</td>
<td>FDA issues first-ever warning about cybersecurity vulnerability of a device</td>
</tr>
<tr>
<td>January 2016</td>
<td>FDA issues draft guidance document on post-approved monitoring of medical device</td>
</tr>
<tr>
<td>January 2005</td>
<td>FDA releases final guidance on cybersecurity for networked medical devices</td>
</tr>
<tr>
<td>June 2013</td>
<td>FDA issues draft guidance on medical device cybersecurity</td>
</tr>
<tr>
<td>October 2014</td>
<td>FDA issues its final guidance document on including medical device cybersecurity</td>
</tr>
<tr>
<td>December 2016</td>
<td>FDA issues final guidance document on post-approved monitoring and remediation of</td>
</tr>
</tbody>
</table>

U.S. FDA premarket guidance for medical device cybersecurity

U.S. FDA asks that cybersecurity information be **submitted as part of a device’s application for approval**, including:

- Hazard analysis of cyber risks
- Controls to mitigate specific risks
- A plan of how to patch devices
- Controls to maintain device integrity
- Instructions on how to use related controls like antivirus software
U.S. FDA’s post-market guidance for medical device cybersecurity

U.S. FDA highlights if the following criteria are met they will not enforce 806 reporting requirements:

1.) No serious adverse events are known to have been caused by the vulnerability

2.) Fixes are made and users are notified within 60 days (Two 30 Day Periods Defined In Requirements) of the discovery of the vulnerability

3.) The manufacturer is a member of an Information Sharing Analysis Organization (ISAO) and has a coordinated disclosure process

Treatment plans
A shift in how we think about medical technologies

Before
- Devices are connected to patients physically
- Data obtained from devices are stored on paper or locally
- Devices are physical products
- Care is hand-administered at a health care location
- Physical access is needed to view health data

Now
- Devices are connected wirelessly to patients and other devices
- Data obtained from devices are stored in the cloud
- Devices include software and even databases of health information
- Care is available to patients in the palm of their hand through apps
- Health data can be accessed anywhere on earth

A shift in how we think about regulating medical devices

Traditional considerations meet technology

Evolving

- Safety
- Is a medical device safe for use in humans? Does it cause adverse events? Are its risks tolerable in relation to its benefits?

- Quality
- After approval, a device must be kept safe and effective through adherence to quality manufacturing standards established by FDA

- Security
- Once a medical device is networked with other devices or the internet, is it still safe and effective?

- Efficacy
- Is a device effective for its given purpose? What is the magnitude of the effect?
Interaction with the broader industry is also core to developing an overarching threat landscape, responding to cybersecurity events, and developing more secure devices.

A security centric, risk based product development process is core to the deployment of a secure effective medical device...

- **Secure Product Architecture**
 - Product design must protect the information & the device against any threats posed by external circumstances or by other connected devices.

- **Risk Assessment and Management**
 - Product design must enable identification and management of risk throughout the product development lifecycle.

- **Protected Health Information Aware**
 - Product design must be equipped with handling patient sensitive information to meet both HIPAA and U.S. FDA regulations.

- **Product Safety**
 - Product design must incorporate safety features that meet the regulatory requirements such as alarm systems to protect users and patients from unanticipated adverse situations.
To meet the current regulatory requirements and protect the device from cybersecurity attacks, it is critical to embed security within the lifecycle of the product and in risk management considerations...

Risk Management Considerations
- Inevitable need to explore unidentifiable risks including foreseeable tampering
- Established mechanism to feed post market monitoring data into next-gen device design
- Continuous compliance with HIPAA and other privacy regulations
- IT compliance function with expertise to evaluate compliance with various regulations
- Effective security and data standards with an ability to rapidly respond to emerging threats

Medical Device Cyber Security Approach

Strategy Execution, Design, and Implementation
- Integrated Medical IoT and Enterprise Security Strategy
- Medical IoT Governance and Program Development
- Data Flow Mapping, Identification, Classification, Use and Protection
- Software/Systems Development Lifecycle (SDLC) Process Enhancement

Information Risk and Incident Management
- Control Profile Development
- Medical IoT Risk Management Policy Development and Alignment
- Medical IoT Vendor Risk Management
- Medical IoT Incident Response Playbook Development

Regulatory Compliance
- Mock Regulatory Audits
- Medical IoT Cybersecurity Risk Assessments
- Regulatory Framework Alignment and Compliance
- Medical IoT Risk Assessment Process Development
Medical Device Cybersecurity Framework

The following diagram outlines the key components of a Medical Device Cybersecurity Framework, including roles and responsibilities for management of security risks:

1. **Medical IoT Governance**
 - Development of Governance Model with clearly established roles, responsibilities, and FTE
 - Information Sharing and Analysis Organization (ISAO) Development and Participation
 - Medical IoT Security Strategy
 - Medical IoT Risk Management Policy
 - Medical IoT Minimum Security Baseline (MSB)

2. **Network Security**
 - Network Segmentation and/or Network Access Control (NAC) for critical medical IoT devices
 - Logging and Monitoring for Malicious Activity
 - Forensic Toolkit for Intrusion Analysis
 - Secure Remote Access
 - Secure Medical IoT Device Network Architecture

3. **Medical IT Risk Management**
 - Medical IoT Vendor Risk Management Program
 - Device Risk Profiling
 - Secure Disposal Processes
 - Physical Device Security
 - Secure Disposal Processes

4. **Configuration Management**
 - Patch Management Processes
 - Software Version Control Processes
 - Change Management Processes
 - Logging and Monitoring for configuration changes

5. **Device Security**
 - Medical IoT Device Encryption
 - Secure Device Access Control and Authentication
 - Wireless Security Controls

6. **Asset Management**
 - Device Inventory
 - Device Attribute Collection
 - Asset Management Policy and Processes
 - Secure Device Procurement Processes

Invest in personnel and processes

- Companies should establish and support cybersecurity programs to support devices throughout their lifecycles.
- Cybersecurity experts should be hired or third-parties consulted to vet cybersecurity information.
- Established information-sharing processes – including ISAOs – may lead to more and better disclosures.
- Companies should consider how to best engage with the cybersecurity community as a strategic advantage.
Support can lead to opportunity

Device companies can become essential partners to healthcare providers by helping them support and secure their devices and networks.

Device companies can benefit by giving providers a level of comfort and assurance about product security, potentially leading to increased sales, and insight into how their devices are used and misused, benefiting future device development.

Thank you

Contact

Scott Erven
Managing Director,
Healthcare Cybersecurity
E: scott.erven@pwc.com